Chapter 7.1 Graph Exponential

Growth Functions

Graph: $y = 2^x$

Graph:

$$y = \frac{1}{2} \bullet 4^x$$

$$y = -\left(\frac{5}{2}\right)^x$$

Graph: $y = 4 \cdot 2^{x-1} - 3$

Domain: $\chi \in \mathbb{R}$

Range: $\sqrt{>-3}$

From PF:

growth rate of 2

Exponential Growth Models

$$y = a(1+r)^t$$

a= initial amount

t= years

r= rate/%

1+r = growth rate

In 1996, there were 2573 computer viruses and other computer security incidents. During the next 7 years, the number of incidents increased by about 92% each year.

a. Write a model given n number of incidents t years after 1996 About how many were in 2003?

b. Graph the model.

c. Use the graph to estimate the year when there were about 125,000 computer security incidents.

Compound Interset

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$
 r = annual rate
n = number of

A = amount

P = principle

compounds per year

t = year

You deposit \$4000 in an account that pays 2.92% annual interest. Find the balance after 1 year if the interest is compounded.....

a. quarterly b. daily
$$A = 4000 \left(1 + \frac{.0392}{4}\right)^{4(1)}$$
 A = $4000 \left(1 + \frac{.0392}{365}\right)^{3(5(1))}$

Number of compounds per year

```
yearly= \
semi annually= \( \)
quarterly = 4
monthly = \( \)
this bi-monthly = \( \)
weekly = \( \)
daily= \( \)
\( \)
```

Homework: Ch 7.1 pg. 482 #'s 4,8,14,16,22,24,38